Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(4): e0284250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37036862

RESUMEN

The caudate nucleus has been thought to be involved in the control of motor commands by the cerebrum, and recent studies suggest that it may play a role in the control of attachment behavior, cognition, emotion, and mental functions. Implied by the basal ganglia's involvement in the execution, planning and control of movement, the caudate nucleus functions in a situation-dependent manner where processing of external stimuli is important on the basis of learning and memory. Sensory processing, which determines the response to external stimuli, has been shown to be related to various brain regions but it remains unknown how sensory processing is associated with the structure of the caudate nucleus and white matter microstructures of the caudate. Using four diffusion parameters derived from diffusion tensor imaging (DTI) (i.e., fractional anisotropy (FA), mean diffusivity (MD), axonal diffusivity (AD), and radial diffusivity (RD)) and the Adolescent/Adult Sensory Profile (AASP) questionnaire of 99 healthy subjects [42 males and 57 females; mean age:26.9 years, standard deviation 6.9], we investigated the relationship between white matter structure in the caudate nucleus and sensory processing. In consistent with what had been suggested by the results of previous studies, we found significant correlations between AD, MD and tactile sensation. Furthermore, we found a significant correlation between AD, MD and tactile sensory avoidance, the AASP sub-scores regarding the tactile senses. To the best of our knowledge, this is the first study to show that DTI diffusion parameters correlate with AASP scores in specific brain regions.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Masculino , Adulto , Femenino , Adolescente , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Tacto , Anisotropía , Percepción
2.
Cereb Cortex ; 32(24): 5654-5663, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35196707

RESUMEN

DNA methylation age has been used in recent studies as an epigenetic marker of accelerated cellular aging, whose contribution to the brain structural changes was lately acknowledged. We aimed to characterize the association of epigenetic age (i.e. estimated DNA methylation age) and its acceleration with surface area, cortical thickness, and volume in healthy young adults. Using the multi-tissue method (Horvath S. DNA methylation age of human tissues and cell types. 2013. Genome Biol 14), epigenetic age was computed with saliva sample. Epigenetic age acceleration was derived from residuals after adjusting epigenetic age for chronological age. Multiple regression models were computed for 148 brain regions for surface area, cortical thickness, and volume using epigenetic age or accelerated epigenetic age as a predictor and controlling for sex. Epigenetic age was associated with surface area reduction of the left insula. It was also associated with cortical thinning and volume reduction in multiple regions, with prominent changes of cortical thickness in the left temporal regions and of volume in the bilateral orbital gyri. Finally, accelerated epigenetic age was negatively associated with right cuneus gyrus volume. Our findings suggest that understanding the mechanisms of epigenetic age acceleration in young individuals may yield valuable insights into the relationship between epigenetic aging and the cortical change and on the early development of neurocognitive pathology among young adults.


Asunto(s)
Metilación de ADN , Epigenómica , Humanos , Adulto Joven , Envejecimiento/genética , Envejecimiento/patología , Aceleración , Epigénesis Genética
3.
Transl Psychiatry ; 11(1): 616, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873147

RESUMEN

Individuals with autism spectrum disorders (ASDs) exhibit atypical sensory characteristics, impaired social skills, deficits in verbal and nonverbal communication, and restricted and repetitive behaviors. The relationship between sensory characteristics and brain morphological changes in ASD remains unclear. In this study, we investigated the association between brain morphological changes and sensory characteristics in individuals with ASD using brain image analysis and a sensory profile test. Forty-three adults with ASD and 84 adults with typical development underwent brain image analysis using FreeSurfer. The brain cortex was divided into 64 regions, and the cortical thickness and volume of the limbic system were calculated. The sensory characteristics of the participants were evaluated using the Adolescent/Adult Sensory Profile (AASP). Correlation analysis was performed for cortical thickness, limbic area volume, and AASP scores. In the ASD group, there was a significant positive correlation between visual sensory sensitivity scores and the right lingual cortical thickness (r = 0.500). There were also significant negative correlations between visual sensation avoiding scores and the right lateral orbitofrontal cortical thickness (r = -0.513), taste/smell sensation avoiding scores and the right hippocampal volume (r = -0.510), and taste/smell sensation avoiding scores and the left hippocampal volume (r = -0.540). The study identified associations among the lingual cortical thickness, lateral orbitofrontal cortical thickness, and hippocampal volume and sensory characteristics. These findings suggest that brain morphological changes may trigger sensory symptoms in adults with ASD.


Asunto(s)
Trastorno del Espectro Autista , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo , Corteza Cerebral/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética
4.
Sci Rep ; 11(1): 12088, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103636

RESUMEN

Sensory processing and behaviors are altered during the development of connectivity between the sensory cortices and multiple brain regions in an experience-dependent manner. To reveal the relationship between sensory processing and brain white matter, we investigated the association between the Adolescent/Adult Sensory Profile (AASP) and neural connectivity in the white matter tracts of 84 healthy young adults using diffusion tensor imaging (DTI). We observed a positive relationship between AASP scores (i.e., sensory sensitivity, sensation avoiding, activity level)/subscores (i.e., sensory sensitivity-activity level, sensation avoiding-touch) and DTI parameters in the cingulum-cingulate gyrus bundle (CCG) and between AASP subscores (i.e., sensory sensitivity-auditory) and a diffusion parameter in the uncinate fasciculus (UNC). The diffusion parameters that correlated with AASP scores/subscores and AASP quadrant scores (i.e., sensory avoiding and sensitivity) were axonal diffusivity (AD) and mean diffusivity (MD) in the CCG and MD in the UNC. Moreover, the increased sensory avoiding and sensitivity scores represent the sensitization of sensory processing, and the level of diffusivity parameters indicates white matter microstructure variability, such as axons and myelin from diffusivity of water molecules. Thus, the present study suggests that the CCG and UNC are critical white matter microstructures for determining the level of sensory processing in young adults.


Asunto(s)
Cognición/fisiología , Imagen de Difusión Tensora , Giro del Cíngulo , Percepción/fisiología , Sustancia Blanca , Adolescente , Adulto , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...